遊び tokidoki 仕事

数学と音楽と教育と遊び

Top | おしごと | ゼミ | がくせい | すうがく | かがく | きょういく | おんがく | おきにー | Tips | Photo | イベント | ものもう | あれこれ | About

算数事始め(2)

シリーズにするつもりはなかったんだけど,また虱潰しに調べてみたので,報告.
tokidoki.hatenablog.jp

算数科研究ネタ探しを続けているが,調べるとこんな算数活動もあるらしい.

 □□+□□=□□
1,2,3,4,5,7全てを□に当てはめて,正しい式にしましょう.
(小学2年生向け)

ちょっと考えると例えば
 12+35=47
なんて出るわけだが,こういった繰り上がりのないパターンは桁の入れ替えが自由にできるので

\begin{gather*}
 12+35=47, 15+32=47, 32+15=47, 35+12=47,\\
 21+53=74, 23+51=74, 51+23=74, 53+21=74
\end{gather*}

2^3パターンが生まれる.そしてこれ以外には無さそうだ.

さて,こうなると他の6つの数で試すとどうなるか,が気になってくる(でしょ?).
探すと繰り上がりが有るパターンもある.例えば 1,2,3,4,5,8に変えると,

\begin{gather*}
14+38=52, 18+34=52, 34+18=52, 38+14=52,\\
15+28=43, 18+25=43, 25+18=43, 28+15=43
\end{gather*}

という具合で,今度は単なる入れ替えでない.というのも1の位での繰り上がりは許されるが,それをこのゲームのルール上10の位に持ってくるわけに行かないからだ.それでもそれを補完するように別の組み合わせで合計8パターンとなる.
ところが同じ繰り上がりが発生していても補完パターンが無いものも有る.例えば1,2,3,4,6,9だ.

\begin{gather*}
13+49=62,19+43=62,43+19=62,49+13=62
\end{gather*}

その一方で,12パターンある組み合わせもある.1,2,4,5,7,8を選ぶと,

\begin{gather*}
17+28=45, 18+27=45, 27+18=45, 28+17=45,\\
14+58=72, 18+54=72, 54+18=72, 58+14=72,\\
24+57=81, 27+54=81, 54+27=81, 57+24=81
\end{gather*}

となる.ところが,反対に全く何も作れない組み合わせもある.それが結構ある.
たとえば,1,2,3,4,5,6や1,2,3,5,6,8などなど.

さて,これをチマチマ探したのかというと,ご想像の通り,また10進BASICで先回りして調べた.
結果一覧が以下.要するに1から9の中から3つを選ばないので全部で{}_9C_3=84通りの数の組み合わせを全部調べれば良い.
先頭の(123456)などが使用する6つの数,その後は実際の解.

【パターン数=0 】つまり解が無いもの.28個.
\begin{align*}
&(456789),(356789),(345789),(345679),(345678),(246789),(245789),(245678),\\
&(234789),(234689),(234679),(234579),(234567),(156789),(135689),(134679),\\
&(134678),(134589),(134578),(126789),(125689),(124589),(123789),(123679),\\
&(123678),(123569),(123568),(123456).
\end{align*}

【パターン数=4】14個.
\begin{gather*}
(346789):37+49=86, 39+47=86, 47+39=86, 49+37=86,\\
(245679):26+49=75, 29+46=75, 46+29=75, 49+26=75,\\
(236789):28+39=67, 29+38=67, 38+29=67, 39+28=67,\\
(235689):25+68=93, 28+65=93, 65+28=93, 68+25=93,\\
(234569):25+39=64, 29+35=64, 35+29=64, 39+25=64,\\
(145689):15+69=84, 19+65=84, 65+19=84, 69+15=84,\\
(135679):17+39=56, 19+37=56, 37+19=56, 39+17=56,\\
(134689):14+69=83, 19+64=83, 64+19=83, 69+14=83,\\
(125678):15+67=82, 17+65=82, 65+17=82, 67+15=82,\\
(124569):16+29=45, 19+26=45, 26+19=45, 29+16=45,\\
(123579):13+59=72, 19+53=72, 53+19=72, 59+13=72,\\
(123489):32+49=81, 39+42=81, 42+39=81, 49+32=81,\\
(123478):23+48=71, 28+43=71, 43+28=71, 48+23=71,\\
(123469):13+49=62, 19+43=62, 43+19=62, 49+13=62.
\end{gather*}

【パターン数=8】40個.
\begin{align*}
(345689):&36+49=85, 36+58=94, 38+56=94, 39+46=85, \\
&46+39=85, 49+36=85, 56+38=94, 58+36=94,\\
(256789):&27+59=86, 27+68=95, 28+67=95, 29+57=86, \\
&57+29=86, 59+27=86, 67+28=95, 68+27=95,\\
(245689):&24+65=89, 25+64=89, 42+56=98, 46+52=98, \\
&52+46=98, 56+42=98, 64+25=89, 65+24=89,\\
(235789):&23+75=98, 25+73=98, 32+57=89, 37+52=89, \\
&52+37=89, 57+32=89, 73+25=98, 75+23=98,\\
(235679):&23+56=79, 26+53=79, 32+65=97, 35+62=97, \\
&53+26=79, 56+23=79, 62+35=97, 65+32=97,\\
(235678):&26+57=83, 27+38=65, 27+56=83, 28+37=65, \\
&37+28=65, 38+27=65, 56+27=83, 57+26=83,\\
(234678):&23+64=87, 24+63=87, 32+46=78, 36+42=78, \\
&42+36=78, 46+32=78, 63+24=87, 64+23=87,\\
(234589):&24+59=83, 29+54=83, 34+58=92, 38+54=92, \\
&54+29=83, 54+38=92, 58+34=92, 59+24=83,\\
(234578):&25+48=73, 28+45=73, 35+47=82, 37+45=82,\\
&45+28=73, 45+37=82, 47+35=82, 48+25=73,\\
(234568):&23+45=68, 25+43=68, 32+54=86, 34+52=86,\\
&43+25=68, 45+23=68, 52+34=86, 54+32=86,\\
(146789):&16+78=94, 18+49=67, 18+76=94, 19+48=67, \\
&48+19=67, 49+18=67, 76+18=94, 78+16=94,\\
(145789):&14+75=89, 15+74=89, 41+57=98, 47+51=98, \\
&51+47=98, 57+41=98, 74+15=89, 75+14=89,\\
(145679):&14+65=79, 15+64=79, 41+56=97, 46+51=97, \\
&51+46=97, 56+41=97, 64+15=79, 65+14=79,\\
(145678):&16+58=74, 17+48=65, 18+47=65, 18+56=74, \\
&47+18=65, 48+17=65, 56+18=74, 58+16=74,\\
(136789):&13+76=89, 16+73=89, 31+67=98, 37+61=98, \\
&61+37=98, 67+31=98, 73+16=89, 76+13=89,\\
(135789):&15+78=93, 18+39=57, 18+75=93, 19+38=57,\\
&38+19=57, 39+18=57, 75+18=93, 78+15=93,\\
(135678):&13+65=78, 15+63=78, 31+56=87, 36+51=87, \\
&51+36=87, 56+31=87, 63+15=78, 65+13=78,\\
(134789):&13+84=97, 14+83=97, 31+48=79, 38+41=79, \\
&41+38=79, 48+31=79, 83+14=97, 84+13=97,\\
(134579):&14+59=73, 19+54=73, 34+57=91, 37+54=91,\\
&54+19=73, 54+37=91, 57+34=91, 59+14=73,\\
(134569):&13+46=59, 16+43=59, 31+64=95, 34+61=95, \\
&43+16=59, 46+13=59, 61+34=95, 64+31=95,\\
(134567):&13+54=67, 14+53=67, 31+45=76, 35+41=76, \\
&41+35=76, 45+31=76, 53+14=67, 54+13=67,\\
(125789):&12+85=97, 15+82=97, 21+58=79, 28+51=79, \\
&51+28=79, 58+21=79, 82+15=97, 85+12=97,\\
(125679):&12+57=69, 17+52=69, 21+75=96, 25+71=96, \\
&52+17=69, 57+12=69, 71+25=96, 75+21=96,\\
(124789):&14+78=92, 18+29=47, 18+74=92, 19+28=47, \\
&28+19=47, 29+18=47, 74+18=92, 78+14=92,\\
(124689):&12+84=96, 14+82=96, 21+48=69, 28+41=69, \\
&41+28=69, 48+21=69, 82+14=96, 84+12=96,\\
(124679):&17+29=46, 19+27=46, 24+67=91, 27+19=46, \\
&27+64=91, 29+17=46, 64+27=91, 67+24=91,\\
(124678):&12+74=86, 14+72=86, 21+47=68, 27+41=68,\\
&41+27=68, 47+21=68, 72+14=86, 74+12=86,\\
(124579):&12+47=59, 17+42=59, 21+74=95, 24+71=95, \\
&42+17=59, 47+12=59, 71+24=95, 74+21=95,\\
(124568):&12+46=58, 16+42=58, 21+64=85, 24+61=85, \\
&42+16=58, 46+12=58, 61+24=85, 64+21=85,\\
(124567):&15+47=62, 17+45=62, 25+46=71, 26+45=71, \\
&45+17=62, 45+26=71, 46+25=71, 47+15=62,\\
(123689):&13+69=82, 19+63=82, 23+68=91, 28+63=91,\\
&63+19=82, 63+28=91, 68+23=91, 69+13=82,\\
(123589):&12+83=95, 13+82=95, 21+38=59, 28+31=59, \\
&31+28=59, 38+21=59, 82+13=95, 83+12=95,\\
(123578):&12+73=85, 13+72=85, 21+37=58, 27+31=58,\\
&31+27=58, 37+21=58, 72+13=85, 73+12=85,\\
(123567):&12+63=75, 13+62=75, 21+36=57, 26+31=57, \\
&31+26=57, 36+21=57, 62+13=75, 63+12=75,\\
(123479):&12+37=49, 17+32=49, 21+73=94, 23+71=94, \\
&32+17=49, 37+12=49, 71+23=94, 73+21=94,\\
(123468):&12+36=48, 16+32=48, 21+63=84, 23+61=84, \\
&32+16=48, 36+12=48, 61+23=84, 63+21=84,\\
(123467):&16+27=43, 17+26=43, 24+37=61, 26+17=43, \\
&27+16=43, 27+34=61, 34+27=61, 37+24=61,\\
(123459):&14+25=39, 15+24=39, 24+15=39, 25+14=39, \\
&41+52=93, 42+51=93, 51+42=93, 52+41=93,\\
(123458):&14+38=52, 15+28=43, 18+25=43, 18+34=52, \\
&25+18=43, 28+15=43, 34+18=52, 38+14=52,\\
(123457):&12+35=47, 15+32=47, 21+53=74, 23+51=74,\\
 &32+15=47, 35+12=47, 51+23=74, 53+21=74.
\end{align*}

【パターン数=12】2個.
\begin{align*}
(134568):&15+48=63, 16+38=54, 18+36=54, 18+45=63,\\
&35+46=81, 36+18=54, 36+45=81, 38+16=54,\\
&45+18=63, 45+36=81, 46+35=81, 48+15=63,\\
(124578):&14+58=72, 17+28=45, 18+27=45, 18+54=72,\\
&24+57=81, 27+18=45, 27+54=81, 28+17=45,\\
&54+18=72, 54+27=81, 57+24=81, 58+14=72.
\end{align*}

まぁ,まずはとにかくやってみることだ.

おっと,また整理されてないBASICソースを.

REM
REM [算数科研究ネタ]
REM 「6つの数で二桁足し算□□+□□=□□を作る」
REM Ver. 2019/01/04
REM

LET nums$="123456789"
FOR p=1 TO 9
   LET X$=nums$
   LET X$(p:p)=""
   FOR q=1 TO 8
      LET X0$=X$
      LET X0$(q:q)=""
      FOR r=1 TO 7
         LET X1$=X0$
         LET X1$(r:r)=""
         PRINT "For [";X1$;"]"
         LET LL=LEN(X1$)
         FOR i=1 TO LL
            LET D2$=X1$(i:i)
            LET X2$=X1$
            LET X2$(i:i)=""
            FOR j=1 TO LL-1
               LET D1$=X2$(j:j)
               LET X3$=X2$
               LET X3$(j:j)=""
               LET a=VAL(D2$&D1$)
               FOR k=1 TO LL-2
                  LET D4$=X3$(k:k)
                  LET X4$=X3$
                  LET X4$(k:k)=""
                  FOR l=1 TO LL-3
                     LET D3$=X4$(l:l)
                     LET X5$=X4$
                     LET X5$(l:l)=""
                     LET b=VAL(D4$&D3$)
                     IF a+b=VAL(X5$) THEN
                        PRINT USING"##+##=##":a,b,VAL(X5$)
                     ELSE
                        LET X5$=X5$(2:2)&X5$(1:1)
                        IF a+b=VAL(X5$) THEN
                           PRINT USING"##+##=##":a,b,VAL(X5$)
                        END if
                     END if
                  NEXT l
               NEXT k
            NEXT j
         NEXT i
         PRINT "-----------------------"
      NEXT r
   NEXT q
NEXT p
END

本当はすごい小学算数

本当はすごい小学算数