読者です 読者をやめる 読者になる 読者になる

遊び tokidoki 仕事

数学と音楽と教育と遊び

Top | おしごと | ゼミ | がくせい | すうがく | かがく | きょういく | おんがく | おきにー | Tips | Photo | イベント | ものもう | あれこれ | About

k倍完全数探し―その後とちょっとしたCollatz-likeな問題

前回はk倍完全数を探すのにちょっと使えそうな評価式を紹介した.
tokidoki.hatenablog.jp

で,その後の数学同人Sigmaにて,5倍完全数探しが続いた.
評価式によれば少なくとも13以上の素因数が必要となるので,
13を含んだ形でヒューリスティックに探していく.
その際,素数の冪の約数和を素因数分解した一覧表があると便利だということになり,
まずはそれを20未満の素数の範囲で書き出す.
その際,活躍したのがCASIOが提供している素因数分解をしてくれるwebサイトだ.
keisan.casio.jp
というか,随分色々やってくれるんだね,ここ.さすが電卓の会社だ.
で,今自分でやってみて気付いたのだけど,
なんと,入力欄には計算式入れても素因数分解してくれるんだね.

さて前回同様,Nの約数和をS(N)と表す.13を素因数に持つのなら
 S(13)=2*7,S(132)=3*61,S(133)=22*5*7*17,...
といった表を使うのだけど,たとえば61のような大きな素因数を持つものは
予め考えないことにして,13もしくは133が因数にあると思って話を進める.
下の写真で赤丸が付いているものが使えるもの,というつもりだ.
一方で13を因数に持つのだから他のS(素数の冪)で13を因数に持つものを拾い出し,
できるだけ新しい素数が現れないものを組み合わせていく.
そんなこんなであれこれやっていたら漸く一つの組み合わせを見つける.
 211*35*53*73*133*17=796928461056000
う~ん,巨大だね.
f:id:okiraku894:20160622192640j:plain

さて,一つ見つけたのでwebで答え合わせ.
検索するともっとずいぶん小さいのがあるとのこと.
倍積完全数 - Wikipedia
5倍完全数はデカルトが1638年に見つけているのだそうだ.
まぁ,確かに上記のような方法であれば計算機がなくとも根気があれば見つけられそうだ.
しかしなんで我々が見つけたものがでかくなったのだろう,と振り返ってホワイトボードを見ると,
S(72)=57 が分解できることを忘れていたからだった.

さてさて,こんな表を見ていたら新たな問題を思いついた.
約数和S(N)をCollatz-likeに,つまり力学系的に見たらどうなるだろう,ということだ.
具体的には以下の操作を繰り返す.

  1. Nが偶数なら2冪の因数を取り除く.
  2. Nが奇数ならS(N)を求め,これを新たなNとする.

ちょっと手を動かしてみるとみな 1 に行き着くようだが,果たして.
本当に発散しないのだろうか?また有界でも周期軌道があるかもしれない.
例えば今回利用したS(N)の評価式から発散しないことが示され...ダメか.

あ,因みに,Collatzの3x+1問題はこちらで.
コラッツの問題 - Wikipedia
自分もこの問題に関するものを幾つか書いているのだけどね.
DSpace at 愛知教育大学: Collatzの3k+1予想に現れるフラクタルと記号力学
DSpace at 愛知教育大学: A fractal set associated with the Collatz problem
DSpace at 愛知教育大学: Interval Preserving Map Approximation of 3x + 1 Problem
DSpace at 愛知教育大学: The van der Corput Embedding of ax + b and its Interval Exchange Map Approximation

Van der Corput埋め込み(あるいはMonna map)のもとでCollatz写像の軌道を描いたもの↓
f:id:okiraku894:20160623150904g:plain