遊び tokidoki 仕事

数学と音楽と教育と遊び

| おしごと - きょういく - がくせい - ゼミ - イベント | すうがく - おんがく - 数理音楽 - DTM - かがく - scratch
| Art - photo - おきにー - Tips - ものもう - あれこれ | About - Top

砂の果実 ― 結局,僕らは何を教えているのだろう ―

そういえば昨年の秋,京都教育大学の谷口和成先生を招いて
アクティブラーニングの授業実践のFDが行われた.
www.aichi-edu.ac.jp
大学教員と同数程度の学生も参加していたという,なかなか珍しいFDだったのだが,
近年に無く鮮やかなショックを与えてくれたので記録しておこうと思った.
しかし何しろ半年前のこと,ショックだけは残っているものの内容はすっかりうろ覚え,
関係論文を見ながら再現してみよう,あの砂を噛むような感覚を.



今回の内容は中学レベルの直列・並列回路に関する「誤概念」を素材に
講義の中で「主体的・対話的な学び」を引き起す,
一つの具体的提示を行ったものだった.
ci.nii.ac.jp
中学校電気分野における電位概念の導入と学習教材の開発

クリッカーやらタブレットやらIT機器を利用して
対話的に全員参加を促す仕組みについては諸論あるところだろうが,
そういったことがショックだったわけではない.
参加学生はもちろん教員養成大学の学生であり,しかも理系が半数ぐらいいたはずだ.
そしてテーマは中学校の直列・並列.
中にはあと半年もすれば現場で実際に理科を教える者もいただろう.

講義の入り口は電圧・電流・抵抗の関係を思い出すところから.
そもそも抵抗ってなんだっけ?的な質問から始まった(のだっけ?)
「他の説明は?」と,できるだけ多様な言い方を学生らにしてもらう.
そうして出てくる答え方の数,言葉の種類から
その事象についてどこまで分かっているか,が見えるとともに,
中には間違った理解「誤概念」が現れてくることもある.
そうそう,この「誤概念」を一つのツールとして利用するのはオオアリだなぁ,
とそのとき思ったのだった.比較的多くの学生が間違って理解していること,
それをネタに学生同士で議論させると自然に対話的・主体的な学びになりやすい.
「よく分かっているつもり」だったことが違っていたら必死になるだろうし,
あるいはこの議論の中で,なぜ相手がそういう誤解をするのだろうか,
どう考えるとそういった誤答になるのか,という想像力は
まさに教員として現場に立つ者達にとって最重要な力だろうと思うわけだ.

そんなこんなで電流・電圧・抵抗を思い出させ,
対話的に電流と電圧の関係のグラフをタブレットに描かせて
結果一覧をスクリーンに映したりしていた(のだっけ?)
何にしても少し時間を掛けて電圧と電流の比例関係であるオームの法則
   E=IR
に落ち着くところまで進む.
つまりこうして一度きちんと準備しておいたのである.
このとき確か「抵抗とは電流の流れにくさを表す」という言葉を
受講者側から引き出していたと記憶している.

さて問題はここからだ.
(学生の反応が問題だ,と言いたかったのだが,
 こちらも提示された問題がどんなものだったか再現できなくなっていることに
 こうして書きながら気付いたので二重の意味で問題なのだ.)

電球(それは抵抗の一種)のある適当な回路を見せて
直列か並列かを議論する場があり,アヤシイ解答をするグループがあったものの
まだ頷ける範囲の間違え方だった(ように記憶している).
ただ,どの問いに対しても学生の解答を一覧で示し学生同士で議論させるのみで,
正解を言う,といった場面はあえて作っていなかった.
そして同等な電球の並列つなぎは同じ明るさだったよね,といったことを復習してから,
「誤概念」が最もよくあらわれる問題を提示した.
A,B,Cの豆電球を明るい順に並べよ(ただこの問題は後付け.もっと違った気がする).
f:id:okiraku894:20170311183939p:plain
きっと習いたての中学生なら高確率で正解を言う問題(のはず)だ.
(もちろん乾電池と電球はどれも同等だとする.)

さてすぐに映し出される解答の集計を見ると,これがかなりばらつくことが分かる.
そこでそれぞれのグループにそう考えた理由を尋ねると,
見事に「誤概念」に基づく説明が出てくる.
いわゆる教科書にも援用されている水流モデルを用いて
枝分かれがあるような並列つなぎでは「電流が分かれるので」
並列つなぎでは電球が暗くなる,というものだ(実際はA=C>Bとなる).
もちろんその講義では正解を示す,などといった野暮なことはしない.

では自分の考えが正しいことを周りに説明し説得しよう,という時間が設けられる.
先ほど私たちは電圧と電流の比例関係
   E=IR
を確認したところだったね,と付け加えて.
やがて各グループからそれぞれの説明が発言されるのだが,
そこからはこの水流モデルに基づく誤解がかなり強力なのだということが窺える.
おっと,忘れてはいけないのはこの場には物理専攻を中心とする理系がかなり居たこと.
にも拘らず,元となる関係 E=IR に基づいた説明がなかなかなされない.
(もうこの時点で理科の先生方は学生らの反応を見て頭を抱えていたのだが.)
そして私が,そしておそらくそこに居られた理系の先生方全てが,
最もショックを受ける瞬間が訪れたのだった.

或る理系グループから
「並列回路の合成抵抗を計算するとAの抵抗の半分になるので,全体の電流はAの2倍になり,
それが枝分かれするので電球Cに流れる電流はAに流れる電流と等しく,だから同じ明るさになる」

といった説明が出る.この時点で理系教員全員が
「いやいやいや,そうではなくって」というツッコミを内心でしていた矢先に,
頭を抱えるある数学の学生.
「お,君は今なぜ頭を抱えた?」と谷口氏が尋ねると,
「合成抵抗という考え方をすっかり忘れていたことにショックを受けました.」
との返答.もう,ここにきて我々教員,全員ツッコんでいた.
「そこかよ!」

「え,合成抵抗の考えを使って答えて何がいけないの?」
と思う学生もいることだろう.説明が間違っているわけではない.
だが,概念を十分理解した上での解答だとはとても思えない.
たとえて言うならこの解答は,「2^33^2ではどちらが大きいか」という問いに,
「それぞれの常用対数を取ると
\log_{10}2^3=3\log_{10}2\fallingdotseq3\times0.3010=0.9030
\log_{10}3^2=2\log_{10}3\fallingdotseq2\times0.4771=0.9542となり,
\log_{10}2^3<\log_{10}3^2が分かるから2^3<3^2である.」
と答えているようなものなのだ.
そんなことせずとも,直接2^3=8<9=3^2が分かるよね?
つまり,電球A,Cいずれも乾電池一つ分の電圧がかかっていること,
そしてオームの法則に従って同じ量の電流が流れていることさえ分かれば良いわけだ.
先ほどの合成抵抗の考えはこの「同じ電圧がかかる」という事実から導かれることであり,
だから合成抵抗を使って答えるのは本末転倒なのだ.

常用対数を使った2^33^2の比較が滑稽だと皆が感じるのは,
2^3=2\times2\times2,3^2=3\times3 だということが十分分かっているからに他ならない.
100歩譲って少なくとも教員養成大学の理系学生なら「合成抵抗による解答」が滑稽だ,
と思えるぐらいにオームの法則を身につけているものだと思っていたのだったが,
もしかすると答えた学生も頭を抱えた学生も「すごい解答だ!」と思っているかもしれない.

講演者を含め,微妙な空気に教員全体が包まれてやがてFDは終わった.

このFDでも経験したことなのだが,どうやら「理解する」という意味自体が,
この数年で我々教員世代と学生世代で急速に違ってきているように思えてならない.
つまり学生にとっての理解とは「念仏を正しく唱えられること」のようなのである.
彼らにとってその念仏が意味するところはあまり重要でないようなのだ.


19世紀末,足し算のできる馬「賢馬ハンス」というのが世間を騒がせたそうだ.
賢馬ハンス - Wikipedia
足し算の問題を出すと,その答えの分だけ蹄で地面を叩くというのだ.
もちろん,この馬は足し算を「理解している」わけではなく,
聴衆の期待を敏感に感じて,つまり「その場の空気を巧みに読んで」反応していたに過ぎない.
聴衆はそれを見て「すごいすごい」と褒め称やしたわけだ.
しかしハンスは自分の行っていること,つまり足し算の概念を永遠に知ることは無い.
彼にとって出題者の表情の微妙な変化を読み取ることが目的の全てだからだ.


思えばセンター試験に代表される穴埋め式,選択肢式ペーパーテストといったものは
この「賢馬ハンス」を大量生産しやすい仕組みだった.
大量に過去問を収集し大量にこなせばある程度のパフォーマンスが出せる仕組みだから,
世代を経て次第にこうしたテストへの「お勉強の最適化」が行われてきたことは,
今振り返るとごく当たり前の結果だった.
当然我々教員世代もこのテストへ特化した勉強といったものを経験している.
けれども多くの私たちは「今はテスト特化モード」という意識を持って対応していたと思う.
つまりテストとは無関係の学びの形も心の中には同時に維持していたのだ.
どこかしら「たかがテストごとき社会システムに我々の知性が侵されてなるものか」
といった意地もあった気もする.
そこには「知」へのはるかな憧憬とある種の畏怖の念も存在していた.
子ども心にもそんな風に「知」に対峙できる十分な時間のあった幸せな時代だった,
ということなのかもしれない.

この国は貧しくなった.
経済的にも心理的にも,そして知性の点でも.
あるいは,時間的に貧しくなった,と言ってもいい.

3/8の朝日新聞の読者投稿欄に「読書はしないといけないの?」という,
教育学部の学生の投稿があった.
その主旨は,これまで読書をしてこなかったが特に困ることもなく,
読書が生きる上での糧になることもなく,生きる上で特段必要でもない.
だから楽器やスポーツと同じく趣味の問題なのではないか,というものだった.
「お勉強最適化」ここに極まれり,といったところだ.
www.asahi.com
(けれどこれは他人事ではなく,当大学でも本を読まない,
 正確には「読めない」学生が多い.そんな彼らもやがて教育現場に向かうわけだ.)

読書をしないことがいけないとか,お勉強最適化がいけないとか
そんなことはどれだけ言ったところで糠に釘である.
そもそもそんなことは言われて変えられるようなものではない.
けれど曲がりなりにも知性あるいは「知」に関わることになる教育学部の学生である.
この先も外発的な理由によってしか自分自身の知性に関わろうとしない態度のままで,
果たしてどれだけ子どもの知性の働きに気付けるだろうか?
どれほど真面に子どもの知性に向き合えるのだろうか?

外発的な「最適化されたお勉強」と内発的な手探りで泥臭い知の探究の対比.
それはちょうど道徳と倫理について平易な言葉で説いた池田晶子さんの言葉に似ている.

『悪いことはしてはいけないからしない』,これは道徳であり,
『悪いことはしたくないからしない』,これが倫理である.
『善いことはしなければいけないからする』,これが道徳であり,
『善いことをしたいからする』,これが倫理である.
                   池田晶子「私とは何か」

試験に最適化されたお勉強が学びの全てとなっている今の多くの学生に,
私たちは果たして何を伝えられるのだろうか.
明治開国以来,近代化を目指し直走ったこの国が行き着いた場所.
結局私たちが得たものは,砂の果実だったのだろうか.

f:id:okiraku894:20170121075131j:plain

砂の果実

砂の果実

私とは何か さて死んだのは誰なのか

私とは何か さて死んだのは誰なのか